KINETICS OF BINARY MELT - CRYSTAL PHASE
TRANSFORMATIONS

v T. A. Cherepanova UDC 536.421

A number of investigations on the mechanism of metallic-type binary crystal g'rowth has
recently been performed by the method of statistical modeling on an electronic computer [1, 2].
The purpose of this paper is the analytical description of the kinetics of multicomponent alloy
erystallization.

Let us examine the lattice model of a two-phase binary melt—crystal system. The lattice symmetry is
assumed cubic. Atoms of the species ¢ or B are situated at its sites and can be liquid or solid. Let us limit
ourselves to the consideration of interaction between nearest neighbors so that particle interaction in the sys-
tem is characterlzed by the binding energies of the sohd particles ¢ u A <puﬁ . qﬂs the solidwiththe liquid
particles (pio . gom s Plo s q)ﬁ, , and the liquid particles ¢, 0 Lo 143, ¢1y, (the subscript 0 denotes belonging to the
liquid phase and 1 to the solid phase). We will describe the configuration of the atom distribution in the sys-

tem by the set of parameters g = { ;’} Here nj =1, if there is a solid particle at the j-th site of the lattice and
7

n5=0 if there is a liquid particle; ¢; determines the species of particle at this site (¢ j=a, B). We represent
the Hamiltonian averaged with respect to the degrees of freedom but not associated with the order parameters
characterizing the phase transition in the form H=U +K
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The summation here is over the neighbors closest to the site i(je i), and over all lattice sites i{1 <i <N, Nis
the number of particles in the system). The term K describes the contribution of the internal degrees of free-
dom, with respect to which the average is taken, to the Hamiltonian. The liquid phase is assumed homogeneous
so that among the liquid neighbors nearest to the site i, partisof the species a(Cf ) and part of the species
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where c% +c€ = 1. Taking account of (1) and simple manipulations, the expression for the Hamiltonian can be
represented to the accuracy of a constant in the form
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where [1, 2]
By = (PB% - (Pﬁ — By;
&y = 2;.[ ((P?J% - CP}’%) C?;
Oy =065 —6] (v,&E=a,f).

Henceforth, the value of 6, is assumed independent of the temperature and of the species of the particle
neighbor v.

We determine the chemical potentials of the solid and liquid phase components in terms of the system
Hamiltonian
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Taking account of (3), we express the difference between the chemical potentials in terms of the mean change
in energy in the process of a v particle in one of the lattice sites going from one aggregate state into another
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From (4) and (2) we obtain
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where p (g) is the probability of finding the system in the state g and the summation is over all possible sets
N;

i

of the parameters ( ) Equation (5) sets up a relationship between the differences of the chemical potentials

of the liquid and solid phase components and the microscopic characteristics of the system. In the case of
growth of stable crystalline faces in the stationary mode, Ap, bas the meaning of a difference between the
chemical potentials of the volume phases. Indeed, let us represent the potential energy U in the form of a sum
of volume Uy, and surface Ugy,¢ parts such that

U= Uvol ‘f“ Usurrv
m122wmﬁ NEG) (v, E=a. B),

where Nfi,é N(I,’Oé are the numbers of solid-solid and liquid—1liquid bonds of particles of the species v and ¢

in the volume phases. In the stationary growth mode, the mean changes in the volume and surface parts of the
energy during an elementary act of the particles making the transition from one aggregate state to another will
satisfy the relationships

(AUgyty = 0, (AU = (AU g1

Consequently, we have instead of (5)
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In particular, for single-component systems
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which permits finding the entropy factor
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where qu is the equilibrium transition temperature for the pure v component,
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We represent the crystallization process as a set of sequential terminations of elementary transition
events at separate lattice sites on the surface of the growing face for a fixed configuration of the particle dis-
tribution at the sites not taking part in the elementary process at this instant. A cut of the binary system in
the direction of growth in the neighborhood of the crystal —melt interface is represented in Fig.1. To simplify
the model, we limited ourselves to a consideration of the state of the system corresponding to configurations
of the interphasal boundary without an overhang. This means that only one solid atom had a neighbor belonging
to the fluid above it in the atomic column in the direction of the growth rate v. Such a solid atom and the ad-

joining liquid atom above it are called surface atoms.
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A liquid surface atom of the species ¢ with the frequency Wy, can become solid, and a solid surfé.ce atom
with frequency ng can go over into a melt. Let us partition the physmcal time into intervals of duration 7.
The probabilities of transitions in the time 7 from the phase state ‘n] into 77] at the site j are

Wh =W, W, =1. @
nn; nm; n; n;n;

The kinetic equation for the distribution function p (g, t) in the space g can be represented in the form
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The first two terms in the square brackets denote the transition probabilities of particles at the site j in the
state n; from the liquid and solid phases, respectively. The next two terms are the probabilities of reverse
transitions from the statenj into the liquid and solid states, respectively. The transition frequencies W&J .

s
i
are defined so that they are not zero only for lattice sites at which surface atoms are situated. By definition

‘;p(g, ty=1.
Let us consider the relaxation properties of (8). Let p(gj, ) =p &y Mg ... &5 Ny - N> NS t) denote
£y
the probability of detecting a system with the configuration g, to whose j-th site the parameter ( ! corre-
. . N
sponds, Let us represent the solution of (8) in the form

P& M) = HE; my) — AE;, my) exp (—Ad, 9)

where f(,»g], nJ) is the eqlllllbrlllm distribution function, Af(gl, nj) is the deviation of p(gl, nj) from its equilib-
rium value for t=0.

Substituting (9) into (8), and taking account of (7), we obtain an equation to find the eigenvalues A =1—A
and eigenvectors y (gj, ’7j) in the matrix form
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The solution of (10) yields two eigenvalues for each site:
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M=1,M=1— W01 — Wii. (11)
For the components of the eigenvector corresponding to the eigenvalue AJ;, we have
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_. Expanding f(gj, 73) in terms of x(gj, Nj), we obtain
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Taking account of (2), the normalized £(£5, 1y have the form
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where [, is the number of nearest solid neighbors of the species ¢ with vy particles. Taking account of (12),
the second eigenvalue in (11) yields the relatlonshlp

A = WHF e (14)
Starting from the physical meaning of the quantlty Aéj }, we represent it in the form -
‘ A () a9
where Tr-e], is the characteristic relaxation time of the system at the j-th site if the configuration at the remain-~

ing sites is fixed. From (14) and (15) we find
E; =B i\
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Taking account of (13) for the characteristic relaxation time, we obtain
&5 57\ — LyaPyq T+ LpPyp T B8y -t
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v .

(v=a, B).

We select the minimal of the characteristic relaxation times in the model
T=min Tf-é] 1<igh) 1"

as the time interval T of the process. To determine T it is necessary to know Wfo] . It is ordinarily assumed
in kinetic Ising models [3] that the dependence of Wfl on the configuration of the nearest particle neighbors £
has the form

. R A <2 1.o®D o+ 6 -1
1V§{,~25§jv[1+exp(—_ ve V“+k”7? vB T 2% +ev)] .

Then -,-’531 is independent of the species of their nelghbors for all lattice sites.

Let us assume that the frequency of particle attachment to the crystal in the surface node is

D
WYD = 'a_:’
if the particle species at the site is fixed, where D,, is the diffusion coefficient of particles of species v in the
melt, and a is the lattice parameter. The probability of solid particles of species y making the transition into
the liquid phase is determined by (12), and the characteristic time of the process by (16) and (17).

Let us define a two-particle distribution function in the form
i< N)
il k)
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where the summation is over all possible values of £3, M3 at all lattice sites with the exception of the sites i k..
A one-particle distribution function is

P (&L )= X 0P (& M & s ).
Ep.My

Let us introduce the concentration cl:lg' of solid—-solid bonds of nearest neighbors of the species v and vy

c‘f}’i= 2 " 651V6§k1’ninkp(2) (Eiv Nis Ehv Ns i) = % 6§iV6§h?ninkp (gv t)'
13

. Let us multiply the left and right sides of (8) by 08z, +»n;m. and let us sum over all possible states g. Upon
summing the expression in the square brackets in the right side of (8) over nj at the site j for j =i, k and
taking account of (7), we obtain

P (En )l o+ o (& ml . — o m)=o.

Therefore, the equation for the two-particle distribution function 01:12' is determined by the transition fre-
quencies only at the i, k lattice sites
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Substituting (19) into (18), we obtain
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where p (") (¢ i» Mi; t) is a seven-particle distribution function with central site i and six nearest neighbors
jeli.

Let us separate the crystal —melt system into atomic layers parallel to the phase interface. Let us
characterize each layer by concentrations ¢} with solid atoms of the species v (z is the layer number), con-
centrations of solid—solid bonds c;')’ of the nearest neighbors of all species in the xy plane, and cV'YZ_i in
the growth direction, respectively, where z — « corresponds to the liquid phase completely, and z —~w to the
solid phase completely. Let xyz be integer coordinates governing the position of the lattice site in the layer;
Nxyz =1, if there is a solid particle at the site with coordinates xy of the layer z, and 74y, = 0, if there is a
liquid particle. Taking account of the condition of no overhang configuration of the interphasal boundary, the
frequency of particle attachment to the crystal is

v D,

10 = 37 Mxy,2—1 (1 - nxyz)! (21)
if the particle species is determined.

Let us introduce the two-particle approximation po™M(E,,,, Ny ¢)
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where j are the coordinates of the six nearest neighbors to the site i =(x y z). Substituting (22) into (20), taking
account of (12) and (21), and summing over all possible system configurations, we obtain
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where

o, =-c§ eXP( )—iiﬁ (—i ?;%ﬂ) +Evc-f-.
Moreover, the condition of mixing of the liquid phases
(1 — 1) 8P (&> M) = (1 — ) &f (Stio+ B8:5) P (&ss )
has been introduced in the averaging so that cg‘:z_i, cﬁ" are the co‘ncentraiigns of the bonds of solid particles
of species v with the nearest liquid neighbors between the z and z — 1 layers and in the xy plane, respectively.

Introduction of the superscript f means that the concentration of particle bonds belonging to different phases is
considered.

An equation for two-particle distribution functions in the xy plane of the layer z can be obtained analo-
gously to (23)
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The remaining two-particle functions are found from the balance conditions
e = cz-i,z +elit =0 + —;— (e37 =- czf) (y==wv). : (25)

Supplementing (23), (24), (25) by equations for the solid particle concentrations in the layer

dey de¥v,
;,7=§ Z2—(y=a, ),

we have a closed system to find ¢} 7 c” We define the velocity of the interphasal boundary motion in

the form

zzi’

r=-335%
z v @

Dependences of the solid phase component composition on the dimensionless velocity R =va/D are given
in Fig. 2 for different values of the melt concentration ct‘?‘.

The results were obtained for a binary o —f# system with the following values of the parameters: £, =
eg =0, &,, =300 cal/mole, &, g =200 cal/mole, &35 =1500 cal/mole, 8 =1, 63 =3, Dy =Dg.

The curves presented disclose an anomalous dependence on R in the range of values 0<c$ < 0.8, viz:

the concentration of the o component drops sharply in the solid phase as the growth rate-of the concentration
diminishes. Extrapolation of the results to equilibrium (R =0) shows that equilibrium compositions of the solid
phase close to a pure B component correspond to compositions of the liquid phase 0 < c% < 0.8, and close to a
pure o component to the values 0.8 < c‘%‘ < 1. The jump in the liquid and solid phase concentrations diminishes
with the increase in the growth rate, and the kinetic diagrams take on the shape of cigars with a point minimum
at which the compositions of both phases agree. This regularity is graphically illustrated in Fig. 3 also, where
kinetic phase diagrams are given for the values R=0.06 and 0.2 and also the equilibrium diagram obtained by
extrapolation of the results to equilibrium is given. The equilibrium diagram has a eutectic form, where T=
375 K, c% =0.8 correspond to the eutectic point. The jump in the liquid and solid phase concentrations dimin-
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ishes with-the increase in the growth rate but the kinetic diagrams degenerate into diagrams of the cigar type
with a point minimum.

Dependences of the growth rate on the temperature are presented in Fig. 4 for different liquid phase
compositions. The linear temperature dependence of the rate of crystallization for the pure o and 8 com-
ponents indicates a normal growth mechanism for the alloys studied. At the same fime, the nonlinear tempera-
ture dependence of the rate for c%= 0.65—-0.7 denotes the specifics for the appearance of a normal mechanism
for multicomponent systems.

Therefore, in the general case the degree of roughness of the growing boundaries can apparently be a
eriterion for any growth mechanism.

V. F. Kiselev carried out the computation on the electronic computer.
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